
J .  Fluid Mech. (1986), vol. 169, zrp. 27k292 

Printed in Great Britain 
275 

Waves caused by a moving disturbance in a 
shallow channel of finite width 
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Department of Naval Architecture & Offshore Engineering, University of California, Berkeley 

(Received 11 July 1985 and in revised form 16 December 1985) 

The flow created by an impulsively started pressure distribution travelling at a 
constant velocity in a shallow channel is investigated. The restricted Green-Naghdi 
theory of fluid sheets is used to perform the three-dimensional calculations. The 
results show remarkable similarity to model tests. In  particular, these calculations 
predict the periodic generation of two-dimensional solitons in front of and travelling 
faster than the disturbance if the disturbance is large enough. Behind the disturbance 
a complicated, doubly corrugated set of waves is formed. The computations also 
predict that periodic creation of solitons is accompanied by a correspondingly 
periodic oscillation of the wave drag, as well as a dramatic increase in the mean wave 
drag. 

1. Introduction 
Let a body, typically a ship model, situated in a long water-filled basin of 

rectangular cross-section be set into motion, starting from rest, and maintain 
eventually a constant velocity parallel to the length of the basin. If the motion is 
not too far supercritical, it has been observed that two-dimensional waves spanning 
the tank are generated periodically and precede the model down the tank at 
supercritical speed. Hereafter we shall call these waves solitons. 

The first mention of this phenomenon of which we are aware is in a report by Thews 
& Landweber (1935) ; the first published systematic experimental study seems to be 
by Graff (1962), although this was preceded by an earlier report by Sturtzel & Graff 
(1958). The phenomenon was rediscovered experimentally in the ship-model tank of 
the University of California, Berkeley in 1978 and more or less simultaneously in 
various other towing tanks. A systematic experimental investigation was begun in 
1981, some results of which have already been reported (e.g. Huang et al. 1982a, b ;  
Ertekin 1984; Ertekin, Webster & Wehausen 1984). 

In 1982 Wu & Wu reported on some two-dimensional calculations in which quite 
clearly the same phenomenon was occurring, this time numerically. For these 
calculations Wu & Wu used shallow-water equations of Boussinesq-type derived 
earlier by Wu (1981). Some of these calculations are also reported in Huang et al. 
(1982 b). In addition to these papers there are also papers reporting calculations using 
the Korteweg-de Vries equation or similar equations : Akylas (1984) ; Cole (1985) ; Mei 
( 1986). 

In connection with the experimental investigations at U. C., Berkeley numerical 
calculations were also undertaken, two-dimensional as in those of Wu & Wu, but using 
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some equations of Green & Naghdi (1976b) as well as those of Wu. The results are 
reported in Ertekin (1984) and a sample of them is given in Ertekin et al. (1984). 

The calculations reported by Wu & Wu (1982) and by Ertekin et al. (1984) were 
for disturbances caused by a moving two-dimensional pressure distribution on the 
surface or by a moving bump on the bottom. Although the experimentally observed 
phenomenon of escaping solitons was confirmed by these calculations, they were not 
able by their very nature to exhibit one of the striking features of the towing-tank 
experiments, namely the generation of two-dimensional solitons by a moving 
three-dimensional disturbance. These solitons precede the disturbance, with the usual 
complicated three-dimensional wave motion following it. It is the purpose of this 
paper to present such calculations. 

2. Green-Naghdi restricted theory 
The equations that will be used for the calculations are those derived by Green & 

Naghdi (1976b) (hereafter the G N  equations) using the theory of Cosserat surfaces. 
Although these equations are discussed in Ertekin et al. (1984), some further remarks 
may be useful. As is noted in that paper, the only assumption besides that of an ideal 
fluid is that the vertical velocity component w is linear in z, the vertical coordinate, 
and that the horizontal components u and v are independent of z. Otherwise all 
conservation laws and invariance requirements are satisfied as well as the exact 
boundary conditions on the free surface and the bottom. 

There is no formal limitation in the range of Froude number F = U/(gh,)? for which 
the model is applicable as long as F > 0. Here U is the velocity of the disturbance, 
h, the mean water depth and g the acceleration of gravity. On the other hand, the 
nature of the initial assumption about the dependence of the velocity upon z would 
certainly leave one rather doubtful about its applicability in cases where F is quite 
small or where the physical situation is such that the assumption is clearly not 
satisfied even approximately. Nevertheless, since the equations satisfy exactly the 
depth-integrated conservation laws and the invariance requirements, one anticipates 
that they will never predict behaviour contradicting these laws. Hence, one does not 
expect solutions with free surfaces passing through the bottom or other physically 
unacceptable behaviour. They are, of course, limited by the assumption of an ideal 
fluid (an assumption not inherent in the method itself ). On the other hand, there is 
no reason to suppose that the G N  equations will predict accurately, or even at all, 
an upper bound for soliton speed or a possible shape with a corner at the crest, both 
known results for ‘exact ’ solutions of Euler’s equations. 

Since acceptability of the G N  equations seems doubtful for small values of F ,  it 
seems appropriate to ask how small is ‘small’. We have observed experimentally 
ship-generated solitons for values of F as low as 0.2, and in two dimensions have found 
them by numerical computation for F = 0.4. That we didn’t go lower was a 
consequence of computer limitation. Unfortunately, we are not able to  show a direct 
comparison between computation and experimental measurement. 

The G N  equations in the form used here are those for a ‘single constrained 
director ’ and are not adequate to  determine the local pressure within the fluid even 
though they do determine the depth-averaged pressure and the pressure on the 
bottom, and even though their solutions satisfy exactly the imposed pressure 
distribution on the free surface. However, within the framework of Cosserat surfaces, 
there are theories with more directors which can describe more complex flows, and 
still satisfy all conservation laws and invariance requirements (see, e.g. Green & 
Naghdi 1976 a) .  
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3. Equations of motion 
It will be assumed that the fluid is inviscid and of constant density. It is not 

assumed that the motion is irrotational, and indeed i t  is not. This is one of the 
differences between the G-N equations and the equations used by Wu 6 Wu, a 
difference that makes the G N  equations more difficult to solve in three dimensions 
because there is no velocity potential. 

We use a right-handed coordinate system with Oz directed upward, Ox to  the right 
and Oy into the paper. The undisturbed free surface lies in the (z,y)-plane. The 
bottom is described by z = -h(x,y, t ) .  Eventually we shall take h = const. and have 
channel walls a t  y = &- b.  The velocity components of a particle in the directions Ox, 
Oy, 0 2 ,  respectively, are given by u, v, w. As has already been stated above, the basic 
assumption underlying the G-N equations is that  u and v do not depend upon z and 
that w is linear in z. Hence, we have u = u ( x ,  y, t ) ,  v = v(x,  y, t )  and 

w = w&, Y 7 t )  + W , ( G  y, t )  z. 

The free surface will be described by z = ~ ( x ,  y, t ) ,  the pressure on the free surface by 
@(x, y, t )  and the pressure on the bottom by p(z, y, t ) .  

We may now write the G-N equations. Let 

Then conservation of mass becomes 

7t+V*{(r+h) v> = -ht ,  

and conservation of momentum 

vfl D V+gV7 +- = -s - D2hV[27-h] + D27V[47 + h] + (7 + h )  V[2D2v- D'h]}. (3) 
P 

The vertical velocity w can be found explicitly once one has found u, v and 7:  

The pressure on the bottom is given by 

p = pg(7 + h )  +$(y + h )  (D27- D2h) +@, 

9 = $g(7 +h)2+~(7+h)2(2D27-D2h) + @ ( ~ + h ) .  

( 5 )  

(6) 

In  the numerical calculations that will be shown later, h will be taken constant = h,. 

and the depth-integrated pressure, 9 = sp dz, by 

The equations then simplify in an obvious way and become the following: 

7 t+V. { ( r+h , )  v1 = 0, (7 )  
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We recall that the solutions to these equations satisfy the exact boundary 
conditions on the free surface, i.e. p = @, Dq-w = 0, and at the bottom, i.e. 
Dh+ w = 0, as well as all conservation laws and invariance requirements. We recall 
also that the theory does not provide p within the fluid. We add the boundary 
conditions 

on the channel walls. For initial conditions we take 

V ( X ,  f b ,  t )  = 0 (12) 

-3i 
( u , v )  = 0, q = -. 

PS 

4. The three-dimensional disturbance 
I n  order to model with the least effort the effect of a ship moving down a channel, 

we shall take @ in the form @ ( x +  Ut,  y), where @ = 0 outside a rectangle symmetric 
about the x- and y-axes with length L and breadth B. Within the quarter of the 
rectangle, 0 < x < +L, 0 < y < iB,  f~ is defined as 

@ ( X ?  Y) = A m  g(YL (14) 

where 

The definition is extended by symmetry to the full rectangle. 

5. Solution of the equations 
We discuss here the numerical solution of the conservation-of-mass equation (7) 

and the pair of equations (8), a statement of conservation of momentum. In order 
to solve these nonlinear time-dependent partial differential equations, we employ a 
finite-difference method, often referred to as the Modified Euler Method. We note that 
(7) can be solved explicitly for qt once u and v are known at a given time, whereas 
(8) involves time derivatives of u and v as well as of q .  The numerical solutions for 
u and v can be marched in time by means of (8) if we can eliminate the time 
dependence of q from it. Fortunately this can be done by substituting qt from (7) 
into (8). Since it then no longer contains time derivatives of q ,  (8) can now be solved 
for u and v. 

We shall approximate the continuous variables q ( x ,  y, t ) ,  u ( x ,  y, t )  and w(x, y, t )  by 
the discrete variables q&, U& and v&, where i and j denote mesh points on the x- 
and y-axes and n denotes a mesh point on the time axis. We denote the space mesh 
size by Ax ( = Ay) and the time mesh size by At. We note that in the numerical analysis 
we have used dimensionless variables with fundamental units p,  g and h,. I n  order 
to keep track of the variables u and v in the matrix equation that will be obtained 
from (8) and further to  reduce its bandwidth, we introduce a new index m with 

m = 2+2[(j-l)+(i-l)NJ, 
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where N ,  is the number of nodes in the y-direction and 1 = 1 , 2  corresponds to u and 
v respectively. Due to the symmetry of the problem with respect to the x-axis we 
consider only half of the channel in our computations. To achieve this we regard the 
x-axis as another wall where the no-flux condition (12) is enforced. Inspection of the 
momentum equation (8) in the y-direction shows that it is automatically satisfied at 
the channel walls if Ijy = 0 there. 

Because of the necessity of a finite number of mesh points, we also consider two 
fictitious boundaries far in front of and far behind the disturbance. At these ‘open 
boundaries’ we use Sommerfeld’s condition with constant phase speed c = f (gh,):, 
mainly because previous work [e.g. Wu & Wu 1982 and Ertekin et al. 19841 showed 
that it is successful in avoiding significant reflection in the problem that we are 
considering here. This condition may be stated as follows: 

a,+cSZ, = 0, (16) 

where SZ may be u, v or 7. The above condition, in its rather simplistic form (c being 
here a constant), has consistently suppressed reflections from the downstream open 
boundary even though the downstream waves were three-dimensional, criss-crossing 
the channel. 

Having determined the numerical boundary conditions, we approximate in (7) and 
(8) the spatial derivatives of u, v and 7 by well-known central-difference formulas and 
apply to these equations a two-step Modified Euler Method for all the interior nodes 
of the computational region. Equation (8) results in a hite-difference equation with 
banded coefficient matrix that must be solved. We note that in the case of the 
two-dimensional G N  or Boussinesq-type equations the coefficient matrix is a 
tridiagonal one (Ertekin 1984) and consequently can be solved exactly by the Thomas 
algorithm (see, e.g. Ames, Lee & Zaiser 1968). Due to the nature of the equations 
in the three-dimensional case the coefficient matrix that results is a broadbanded 
matrix. We solve the simultaneous linear equations, therefore, by the successive- 
over-relaxation method. 

To monitor the convergence of the iterated solutions u and v between time steps 
n and n+ 1, we used a convergence test with a prescribed tolerance y given by 

where f is u or v, k is the iteration number, and NT is the total number of mesh points 
in the computational domain. The tolerance used, y = caused k,,, to vary 
between 10 and 15 at each time step of the Euler Method (we recall that the Modified 
Euler Method can be applied in two steps). The maximum iteration number was 
reduced by optimizing the successive-over-relaxation parameter a t  the beginning of 
the computer program. In our calculations the parameter that minimized the number 
of iterations lay between 1.4 and 1.5. 

We note that (7) and (8), which we are solving numerically, are given in a coordinate 
system fixed in space. Since the pressure is moving in this fixed system, the 
‘step-shifting-region’ technique devised by Wu & Wu (1982) is applied. Even though 
we have not attempted to solve the G N  equations in a moving frame, one would 
not expect results different from the fixed-frame case since the G N  equations are 
Galilean invariant. Nevertheless, we conjecture that the elimination of nodes at the 
downstream open boundary after each K time steps may help the ‘imperfect’ 
open-boundary condition to contaminate less the interior values. 

The numerical stability of the two-step scheme used here was discussed by Yeung 
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(1982) and Ertekin (1984). The stability of the integration scheme can be characterized 
by an index, 6. When this index is less than one, the computation is stable, and when 
it is greater than one, it is unstable. This index for linear equations is 

6’ = 1 + f ( A t k ~ ) ~ ,  (18) 
where k is the wavenumber. It was found by Ertekin (1984) that  the marginal 
instability indicated by (18) for all choices of At had not created any features of an 
unstable scheme in the solution of the two-dimensional equations. This is mainly 
because wavelengths are long and cross-waves are not present. In  our present 
three-dimensional computations the downstream waves display their usual compli- 
cated structure behind the disturbance and hence the existence of waves with 
wavenumber A = n/Ay is inevitable. In  fact, these waves with 2Ay wavelength caused 
instability in the downstream region, a t  long times, in the form of wave build-up a t  
the channel walls. In  order to remove these numerical waves from the solution we 
applied a filtering scheme first introduced by Shapiro (1975) and derived independently 
by Longuet-Higgins & Cokelet (1976). The following five-point formula is used to 
smooth u and v in the y-direction every five time steps: 

where f is u or v. It was found unnecessary to smooth 9 since 9 is explicitly determined 
by u and v through (7). Our studies have showed that the solitons (their amplitudes 
and speeds) have not been affected by this filtering. 

We have also computed the wave resistance experienced by the pressure distribution. 
The non-dimensional wave-resistance coefficient is given by 

C,, = - JJaii,dfdij, (20) 

where bars indicate that variables are dimensionless. 
A two-dimensional pressure distribution was used in the present computer program 

to check the accuracy of the iterated solutions by comparing them with the ones 
obtained in Ertekin et al. (1984). We have found that the iterated solutions for the 
amplitude and speed of the waves, as well as the wave resistance, differ by less than 

from the ‘exact’ solutions obtained by the Thomas algorithm used in the earlier 
work. The cross-channel soliton-amplitude drift, typically f 0.4 yo, was totally 
eliminated by the application of filtering. There was no soliton speed variation within 
the mesh-size limitation of its determinability either before or after filtering. It has 
also been observed that soliton amplitude varied by f 3 Yo (after i t  has completely 
separated from the disturbance) along the channel. 

All computations presented here were performed on the CDC 7600 of the Lawrence 
Berkeley Laboratory of the University of California at Berkeley using single 
precision. The computer program required about 4000 s of execution time for 700 time 
steps. 

6. Results 
Computations were made for ff = 0.9, 1.0, 1 . 1 ,  and 1.2 for the following values of 

the various parameters : 

(21) - = 8 ,  - - -  - - = 2 ,  p = m a x -  - ’ - 0.3, a = 0.7, p = 0.4. B 1 L  2b 

h0 2b 2 ’  B PShO 

In  addition, for ff = 1.2 computations were made for p = 0.1. Also, Ax/ho = 0.2 
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FIGURE 1. Free surface for f = 1.0 and (a) UT/h,  = 10, ( b )  30, (c) 50, and (d) 60. 

From the numerical results contour plots as well as perspective representations for 
the free surface were prepared for each value of F. For F = 0.9, these were made at 
intervals UT/h, = 5, where T is time ; for F = 1.1 the interval was 11 and for F = 1 .O 
and 1.2 i t  was 10. Although the development of the wave pattern is different in the 
four cases with P = 0.3, the most important aspects will be adequately displayed if 
we show the plots for F = 1.0 up through the appearance of the second soliton and 
then the last plots for 0 .9 , l  .O, 1.1. (We defer the two cases where F = 1.2 until later.) 
These are shown in figures 1 and 2. It is evident that, in all cases, solitons are being 
generated that escape from the moving pressure distribution and move ahead of it. 
The surfaces following the pressure distribution are complicated doubly corrugated 
ones, much different in character from the waves in front of the disturbance. One 
should note that in figures 1,2 ,  5, 6, 7 and 8 the horizontal scale is exaggerated and 
that the displayed length of the free surface is actually 10 times its width although 
it appears to be only 3 times. 
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FIGURE 2. Free surface for (a) F = 0.9, UT/h,  = 70, (6) F = 1.0, UTIh, = 90, and (c) F = 1.1,  
UTfh, = 11. 

Qualitatively the behaviour conforms to  that observed with ship models in a towing 
tank, with one exception. In the experiments the solitons would begin to break as 
F approached 1.2 and would barely be able to  escape from the model. For f > 1.2, 
instead of a soliton a hydraulic jump would be formed, also spanning the tank like 
the solitons, and would accompany the model down the tank. If discontinuous 
solutions (hydraulic jumps) are to be admitted as solutions, then the G-N equations 
must be supplemented by jump conditions, as is customary in t h e  theory of hydraulic 
jumps or of shock waves. Such conditions have been discussed by Green & Naghdi 
(1976a), but we do not attempt to  deal with this problem hem 

Our experience with computations was different. For a particular value of I’there 
appears to be a limiting value of F bcyond which no solitons cscapc. In  this rcgion 
of high Froude numbers the frcc-surface disturbancc is cvcntually local. for thc initial 
starting disturbancc is gradually left bchind. This bchaviour is also apparcnt in results 
of the two-dimensional form of t h c  G N  cyuations (Ertckin et ul. 1984). Computations 
were performed for F = 1.2, for a moving two-dimcnsional prcssurc distribution 
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FIGURE 3. Free surface generated by a mo*ng two-dimensional pressure band with B = 1.2. 
P = 0.3. 
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FIGURE 4. Free surface generated by a mo_ving two-dimensional pressure band with F = 1.2, 
P = 0.15. 
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FIQURE 5. Free surface for F = 1.2, P =  0.30 and UT/h,  = 10, 30, 50, and 80. 

and for two values of p. Figure 3 shows the results for P =  0.3 and figure 4 for 
P = 0.15. These figures display the free-surface profiles g/h,  a t  successive values of 
U T / h ,  at intervals of 20 and show rather strikingly the two types of behaviour, For 
0.15 no solitons are produced, the disturbance is left behind and a lengthening 
depression whose depth decreases with time follows the pressure distribution. For 0.3, 
solitons are escaping and a lengthening depression of approximately constant depth 
follows the pressure distribution. 

Figures 5 and 6 show analogous behaviour for the three-dimensional rectangular 
pressure distributions. Both are for F = 1.2 and show perspective views of g/h, for 
UTIh, = 10, 30, 50 and 80; figure 5 is for P =  0.3, figure 6 for 0.1. Figure 5 is 
qualitatively similar t o  those already shown for lower values of F :  solitons are formed 
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FIQURE 6. Free surfrtce for F = 1.2, P =  0.10 and UT/h,  = 10, 30, 50, and 80. 

and a substantial doubly corrugated disturbance follows the pressure distribution. 
In  figure 6, on the other hand, no solitons are formed. In the immediate neighbourhood 
of the pressure distribution a nearly invariant wave pattern develops, one that spans 
the tank but is not really two-dimensional. Further behind, a gradually lengthening 
slight depression appears. That this really is a depression shows up much more clearly 
in the contour plots. Figures 7 and 8 show these for P =  0.3 and 0.1 respectively, 
for UT/h,  = 80. As one can see, the pressure distribution is followed by a (lengthening) 
depression for P = 0.3, as in the two-dimensional computations. However, the depth 
of the depression does not appear to be decreasing with time as it does for 0.1. 

The different behaviour for the two values of P is also reflected in the wave 
resistance. Figure 9 shows the wave-resistance coefficient C,, computed for the 
three-dimensional pressure distribution as a function of UT/h, for F = 1.0, 1.1, 1.2 
and P = 0.3, and for F = 1.2, P = 0.1. The fmt three cases are typical of C,, when 
solitons are being generated. After an initial transient there is an oscillation about 
a constant value with a period equal to that of soliton generation. For the last case, 

10-2 
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FIGURE 7. Contour map of free surface for F = 1.2, P =  0.30, and UTIh, = 80. 
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FIGURE 8. Contour map of free surface for F = 1.2, P =  0.10, and UTIh, = 80. 

however, where no solitons are being generated, there is a steady decrease in C,, 
following the initial transient. We assume, in conformity with the two-dimensional 
behaviour, that C,, ap_proaches zero. Indeed, it is already very small for UT/h,  > 50. 

For each value of P there appears to be a critical Froude number ffcrit beyond 
which no solitons are generated and the wave resistance decreases to zero as UT/h,  
increases. To determine this function numerically would be prohibitively expensive 
in three dimensions, but inexpensive to do in two. The two-dimensional C,, was 
computed as a function of F for P = 0.10,0.15,0.20,0.25,0.30 and 0.40. When P =  1, 
the static free-surface depression (i.e. the fictitious ship) touches the bottom. Thus, 
values of P approaching 1 may not be appropriate. Figure 10 shows CWr = C , , / P  
plotted against F.  If ff is low enough all of the curves appear to collapse near the 
line C,, = 2.85( 1 -iff). As F increases c,, first increases above this line and then drops 
rapidly to zero. From figure 10 one finds Fcrit x l+P/(O.'7+p). This function is 
shown in figure 11. 

These results are remarkable in several ways. It is surprising that the resistance 
associated with the essentially nonlinear process of soliton generation is proportional 
to P ,  a result usually associated with linear theories. Figure 10 appears to imply that 
no periodic soliton generation will occur for F > 2. However, we have not verified 
this result. Figure 11 indicates that steady solutions for the given sinusoidal shape 
of pressure distribution occur only for combinations of ff and P that lie above the 

- 
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FIGURE 9. Wave resistance coefficient aa a function of UT/h, for f = 1.0, 1.1, 1.2 and P = 0.30, 
and F = 1.2 and P =  0.10. 
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FIGURE 10. C,,/P” as a function of F .  
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FIQURE 11. Bcrit as a function of p. 

curve. We anticipate that other shapes of pressure distribution would exhibit a 
similar behaviour. 

In  addition to the perspective and contour plots, we have also computed wave 
profiles as they would have been perceived by gauges fixed in the tank a t  distances 
25h0 and 60h0 ahead of the initial position of the pressure distribution. These are 
shown for F = 1.0 in figure 12. For comparison, experimentally determined curves 
are shown in figure 13. In  this case the gauges were placed approximately 65h0 and 
130h0 ahead of the model in its starting position. Both the calculated and measured 
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FIGURE 13. Measured wave records taken at gauges fixed in the towing tank approximately 
65h0 and 130h0 ahead of initial position of model; F = 1.0. 
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FIGURE 14. Calculated wave records at points (a) 2h0 and ( b )  8ho ahead of the moving pressure 
distribution ; F = 1 .O. 

curves show waviness in the depression following the pressure distribution or model, 
something not present in the two-dimensional case (see figure 3). 

We have also computed the waves that would have been recorded by moving gauges 
situated 2h0 and 8h0 ahead of the pressure distribution. These are shown in figure 14 
for IF = 1 .O. For comparison we show again for f = 1 .O some measured records from 
moving gauges situated 3h0 and 5h0 ahead of the model. The qualitative similarity 
is evident. Figure 15 includes also the measured resistance coefficient. Although this 
includes frictional and form resistance as well as wave resistance, the similarity to 
the top C,, curve in figure 9 is evident. Even the little jog just before the oscillation 
is present, as it is on other measured resistance curves. 

From the numerical printouts of the solutions i t  is possible to determine with 
reasonable accuracy the soliton amplitude and speed and also the frequency of 
generation. Since the amplitude increases during the initial instants, i t  was taken at  
the last calculated value of UT/ho. The speed relative to the pressure distribution 
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FIQURE 15. Meamred wave records from gauges attached to the towing carriage (a) 3h0 and 
(a) 5h, ahead of the model; F = 1.0. (c) The measured wave resistance of the model. 

F AlhO cl(gha)+ (1 + A h , ) !  
0.9 0.5101 1.224 1.229 
1 .o 0.6248 1.280 1.275 
1 .1  0.7729 1.340 1.332 
1.2 0.9577 1.390 1.399 

TABLE 1.  Amplitudes and speeds of first solitons 

F 0.9 1 .o 1.1 

UTgIh0 20.0 29.6 39.3 

TABLE 2. Dimensionless period of generation of solitons 

was determined from the last two values of UT/ho and then converted to absolute 
speed. The results for the leading soliton are shown in table 1. 

The last column of table 1 also shows the steady-state speed associated with 
amplitude according to 

a formula given originally by Rayleigh (1 876), but appearing also in the Green-Naghdi 
(Green, Laws & Naghdi 1974) theory. There is some inaccuracy in the determination 
of c/(gho)i because mesh size limits the accuracy with which the position of a peak 
can be determined. However, the values conform well with the theoretical values for 
an isolated soliton. 

The period of soliton generation Tg is determined from the time interval between 
the peaks of the first and second solitons at  the first numerical moving wave gauge 
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s F = 0.9 1 .o 1.1 

0.1134 30 35 38 
0.0946 33 38 43 
0.0941 35 42 47 

TABLE 3. Some measured values of UT,/h, 

located 2h0 ahead of the pressure distribution. The results are shown in table 2. The 
value of Tg for F = 1.2 could not be determined, for the peak of the second soliton 
had not appeared before the last value of UT/ho for which calculations were made. 

No precise comparison can be made with experimental values, for the experiments 
were made with a ship model and the calculations with a pressure distribution. 
Nevertheless, a crude comparison is possible. One conclusion from the experiments 
was that the dimensionless period UTg/ho was chiefly determined by the blockage 
coefficient, 8 = midship section area/2bho. By using the hydrostatically displaced free 
surface $/pg as a crude equivalent of a ship, one finds from (14) that 

with the values from (21). In  Ertekin (1984) one can find data for three values of 8: 
0.113 (2b/h0 = 9.76), 0.0946 (2b/h0 = 8.13), and 0.0941 (2b/h0 = 12.2). The corres- 
ponding measured values of UT,/h, are shown in table 3. The agreement is not 
impressive, and was not expected to be, but is mostly within 50 yo of the computed 
values. Both calculated and measured values show the same rising trend as F 
increases. 

7. Concluding remarks 
It seems clear from the preceding section that the G-N equations are able to predict 

behaviour for a moving pressure distribution very similar to that observed for a 
moving ship model in a towing tank. However, we do not think that this is a property 
unique to the G N  equations. In  particular, Wu’s equations would almost certainly 
yield qualitatively similar results. This suggests a mathematical problem, that of 
determining the class of equations that generate solitons ahead of a three-dimensional 
disturbance moving along a canal, while still producing a complex wave pattern 
behind it. 

This research has been sponsored by the Office of Naval Research under Contract 
NOW 14-84-K-0026. 
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